Comparisons of the Circulation Anomalies Associated with Extreme Heat in Different Regions of Eastern China

Author:

Chen Ruidan1,Lu Riyu2

Affiliation:

1. State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, and University of the Chinese Academy of Sciences, Beijing, China

2. State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Abstract

Abstract The circulation associated with extreme heat (EH) typically shows an anomalous anticyclone that enhances temperature through adiabatic heating, but this study indicates obvious spatial variation in eastern China. The EH-related circulation pattern in eastern China can be classified into three categories: typical extratropical pattern, monsoonal pattern, and foehn pattern. EH over northeastern China and eastern north China is characterized by a typical pattern involving an anomalous anticyclone and subsidence, and the air temperature increases throughout almost the entire troposphere. In contrast, EH over the Yangtze River valley and south China is associated with the monsoonal pattern. Over these regions, the air temperature only increases in the lower troposphere as a result of anomalous subsidence and lower humidity that has resulted from a farther north transportation of water vapor by a stronger monsoonal southwesterly. Meanwhile, the air temperature decreases in the upper troposphere because of the decrease of latent heat caused by suppressed precipitation. On the other hand, western north China, with most of its stations located on the eastern leeside of mountains, is obviously influenced by the foehn effect on EH days. The foehn-related northwesterly anomalies bring drier and warmer air from the mountains to sink on the leeside and greatly increase the air temperature in the lower troposphere, particularly near the surface. Therefore, the impacts of monsoon and topography should be taken into consideration when EH-related circulations are discussed over the many regions of eastern China. As a result, the reliable projection of air temperature in these regions under global warming is a challenging problem.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 115 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3