Impact of Rossby and Kelvin Wave Components on MJO Eastward Propagation

Author:

Wang Lu1,Li Tim1,Nasuno Tomoe2

Affiliation:

1. Key Laboratory of Meteorological Disaster, Ministry of Education, and Joint International Research Laboratory of Climate and Environmental Change, and Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China, and International Pacific Research Center, and School of Ocean and Earth Science and Technology, University of Hawai’i at Mānoa, Honolulu, Hawaii

2. Department of Seamless Environmental Prediction Research, JAMSTEC, Yokohama, Japan

Abstract

There are contrasting views concerning the impact of Rossby wave component of MJO flow on its eastward propagation. One view (called “drag effect”) argues that because Rossby waves propagate westward, a stronger Rossby wave component slows down the eastward propagation. The other view (called “acceleration effect”) argues that a stronger Rossby wave enhances east–west asymmetry of moist static energy (MSE) tendency and thus favors the eastward propagation. This study aims to resolve this issue through diagnosis of both idealized aquaplanet simulations and 26 models from the MJO Task Force/GEWEX Atmospheric System Studies (MJOTF/GASS). In the aquaplanet experiments, three sets of zonally uniform, equatorially symmetric SST distributions are specified. The MJO phase speed is faster in the presence of a narrower SST meridional profile, in which both the Rossby and the Kelvin wave components are stronger and the east–west asymmetry of MSE tendency is larger. A further analysis of the 26 general circulation models reveals that the MJO propagation skill and phase speed are positively correlated to both the Rossby wave and the Kelvin wave strength in the lower free atmosphere (above 800 hPa). Models that have a stronger Rossby and Kelvin wave component tend to simulate realistic and faster eastward propagation. Therefore, both the aquaplanet and the multimodel simulations support the Rossby wave acceleration effect hypothesis.

Funder

National Natural Science Foundation of China

JAMSTEC JIJI Theme 1 project

National Key R&D Program

National Science Foundation

Jiangsu projects

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3