Affiliation:
1. State Key Laboratory of Severe Weather, and Institute of Climate System, Chinese Academy of Meteorological Sciences, and University of Chinese Academy of Sciences, Beijing, China
2. State Key Laboratory of Severe Weather, and Institute of Climate System, Chinese Academy of Meteorological Sciences, Beijing, China
Abstract
Abstract
The boreal summer monsoon (BSM), which includes the monsoons over India (IND), the western North Pacific (WNP), East Asia (EA), North America (NAM), and North Africa (NAF), shows prominent interannual variation (IAV) in summer precipitation and affects the areas with the largest populations in the world. In the present, the EOF analysis is used to extract the BSM dominant covariation mode during 1979–2014. This mode is featured by the out-of-phase rainfall IAV over the WNP compared with the other BSM members. The BSM covariation mode is closely associated with the upper- and lower-level coupled circulations, which are characterized by two anomalous zonal circulations over the tropical oceans coupled near the date line and an abnormal meridional cell over the WNP and EA regions, respectively. Furthermore, the strength of this mode depends on the phase relationship of rainfall IAV between the WNP and NAM monsoon regions, which is modulated by the seasonal evolution of ENSO events and the resultant SST anomalies (SSTAs) in the tropical Indian Ocean (TIO). The weaker mode is accompanied by the in-phase rainfall IAV between these two regions, along with the persisting ENSO events and stronger SSTAs in the TIO from winter to summer. In the years with fast-decaying ENSO events and the related weaker TIO SSTA, the out-of-phase rainfall IAV between the WNP and NAM region takes place to enhance this mode. A series of AGCM sensitivity experiments could reproduce the anomalies of atmospheric circulation related to the distinct seasonal evolution of ENSO events.
Funder
National Natural Science Foundation of China
Basic Scientific Research and Operation Foundation of the CAMS
the Basic Scientific Research and Operation Foundation of the CAMS
Publisher
American Meteorological Society
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献