Comparison of Seasonal Potential Predictability of Precipitation

Author:

Feng Xia1,DelSole Timothy2,Houser Paul1

Affiliation:

1. Department of Geography and Geoinformation Science, George Mason University, Fairfax, Virginia

2. Department of Atmospheric, Oceanic and Earth Sciences, George Mason University, Fairfax, Virginia

Abstract

Abstract Three methods for estimating potential seasonal predictability of precipitation from a single realization of daily data are assessed. The estimation methods include a first-order Markov chain model proposed by Katz (KZ), and an analysis of covariance (ANOCOVA) method and a bootstrap method proposed by the authors. The assessment is based on Monte Carlo experiments, ensemble atmospheric general circulation model (AGCM) simulations, and observation-based data. For AGCM time series, ANOCOVA produces the most accurate estimates of weather noise variance, despite the fact that it makes the most unrealistic assumptions about precipitation (in particular, it assumes precipitation is generated by a Gaussian autoregressive model). The KZ method significantly underestimates noise variance unless the autocorrelation of precipitation amounts on consecutive wet days is taken into account. Both AGCM and observation-based data reveal that the fraction of potentially predictable variance is greatest in the tropics, smallest in the extratropics, and undergoes a strong seasonal variation. The three methods give consistent estimates of potential predictability for 67% of the globe.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3