Influence of the Background State on Rossby Wave Propagation into the Great Lakes Region Based on Observations and Model Simulations*

Author:

Holman Kathleen D.1,Lorenz David J.2,Notaro Michael2

Affiliation:

1. Nelson Institute Center for Climatic Research, and Department of Atmospheric and Oceanic Sciences, University of Wisconsin–Madison, Madison, Wisconsin

2. Nelson Institute Center for Climatic Research, University of Wisconsin–Madison, Madison, Wisconsin

Abstract

Abstract The authors investigate the relationship between hydrology in the Great Lakes basin—namely, overlake precipitation and transient Rossby waves—using the National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) reanalysis data and historical output from phase 3 of the Coupled Model Intercomparison Project (CMIP3). The preferred path of observed Rossby wave trains associated with overlake precipitation on Lake Superior depends strongly on season and appears to be related to the time-mean, upper-level flow. During summer and fall, the Northern Hemisphere extratropical jet is relatively narrow and acts as a waveguide, such that Rossby wave trains traversing the Great Lakes region travel along the extratropical Pacific and Atlantic jets. During other months, the Pacific jet is relatively broad, which allows more wave activity originating in the tropics to penetrate into the midlatitudes and influence Lake Superior precipitation. Analysis is extended to CMIP3 models and is intended to 1) further understanding of how variations in the mean state influence transient Rossby waves and 2) assess models’ ability to capture observed features, such as wave origin and track. Results indicate that Rossby wave train propagation in twentieth-century simulations can significantly differ by model. Unlike observations, some models do not produce a well-defined jet across the Pacific Ocean during summer and autumn. In these models, some Rossby waves affecting the Great Lakes region originate in the tropics. Collectively, observations and model results show the importance of the time-mean upper-level flow on Rossby wave propagation and therefore on the relative influence of the tropics versus the extratropics on the hydroclimate of the Great Lakes region.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3