Investigation of the Surface and Circulation Impacts of Cloud-Brightening Geoengineering

Author:

Baughman E.1,Gnanadesikan A.2,Degaetano A.3,Adcroft A.4

Affiliation:

1. Department of Atmospheric Sciences, University of Washington, Seattle, Washington

2. Earth and Planetary Sciences, The Johns Hopkins University, Baltimore, Maryland

3. Earth and Atmospheric Sciences, Cornell University, Ithaca, New York

4. Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, New Jersey

Abstract

Projected increases in greenhouse gases have prompted serious discussion on geoengineering the climate system to counteract global climate change. Cloud albedo enhancement has been proposed as a feasible geoengineering approach, but previous research suggests undesirable consequences of globally uniform cloud brightening. The present study uses GFDL’s Climate Model version 2G (CM2G) global coupled model to simulate cloud albedo enhancement via increases in cloud condensation nuclei (CCN) to 1000 cm−3 targeted at the marine stratus deck of the Pacific Ocean, where persistent low clouds suggest a regional approach to cloud brightening. The impact of this regional geoengineering on global circulation and climate in the presence of a 1% annual increase of CO2 was investigated. Surface temperatures returned to near preindustrial levels over much of the globe with cloud modifications in place. In the first 40 years and over the 140-yr mean, significant cooling over the equatorial Pacific, continued Arctic warming, large precipitation changes over the western Pacific, and a westward compression and intensification of the Walker circulation were observed in response to cloud brightening. The cloud brightening caused a persistent La Niña condition associated with an increase in hurricane maximum potential intensity and genesis potential index, and decreased vertical wind shear between July and November in the tropical Atlantic, South China Sea, and to the east of Japan. Responses were similar with CCN = 500 cm−3.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3