Affiliation:
1. Institute of Geography and Geology, University of Würzburg, Würzburg, Germany
Abstract
Abstract
Detection and attribution methods in climatological research aim at assessing whether observed climate anomalies and trends are still consistent with the range of natural climate variations or rather an indication of anthropogenic climate change. In this study, the authors pursue a novel approach by using discriminant analysis to enhance the distinction between past and future climates from state-of-the-art climate model simulations. The method is based on multivariate fingerprints that are defined in the space of several prominent climate indices representing the thermal, dynamical, and hygric aspects of climate change. Attribution is carried out by means of a Bayesian classification approach.
The leading discriminant function accounts for more than 99% of total discriminability, with temperature variables, extratropical precipitation, and extratropical circulation modes mainly contributing to the discriminant power. The misclassification probability between probability density functions of past and future climates is substantially reduced by the discriminant analysis: from >50% to <15%. Since the mid-1980s, the observed anomalies of the considered climate indices are more or less consistently attributed to a climate under strong radiative forcing, projected for the first half of the twenty-first century. The authors also assess the sensitivity of their results to different emissions scenarios from the CMIP3 and CMIP5 multimodel ensembles, seasons, prior probabilities for the early twenty-first-century climate, estimates of the observational error, low-pass filters, variable compositions, group numbers, and reference data.
Publisher
American Meteorological Society
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献