Summertime Planetary Wave Resonance in the Northern and Southern Hemispheres

Author:

Kornhuber K.12,Petoukhov V.1,Karoly D.3,Petri S.1,Rahmstorf S.12,Coumou D.14

Affiliation:

1. Potsdam Institute for Climate Impact Research–Earth System Analysis, Potsdam, Germany

2. Universität Potsdam, Potsdam, Germany

3. ARC Centre of Excellence for Climate System Science, University of Melbourne, Parkville, Victoria, Australia

4. Institute for Environmental Studies, Vrije Universiteit, Amsterdam, Netherlands

Abstract

Slow-moving planetary waves of high amplitudes are often associated with persistent surface weather conditions. This persistence can lead to extreme weather events with potentially serious implications for society and nature. Quasi-resonant amplification (QRA) of planetary waves has been proposed as a mechanism to generate high-amplitude hemisphere-wide patterns of wavenumbers 6–8 in the Northern Hemisphere (NH) summer. Here this mechanism is studied in both hemispheres. Analyzing 1979–2015 reanalysis data, evidence for QRA in the Southern Hemisphere (SH) is found for wavenumbers 4 and 5. It is shown that the difference in resonating wavenumbers between hemispheres stems from the different magnitude and latitudinal shape of the respective zonal-mean zonal winds. During resonance events a strong and narrow jet is observed in both hemispheres, whereas the emergence of a second zonal mean jet at high latitudes (i.e., a “double jet”) is seen in the NH only. Strong and narrow jets can form stable, zonally oriented waveguides, which are an essential prerequisite for resonance. After investigating the waves’ preferred phase positions during QRA, a bimodal behavior is identified for wavenumbers 4 and 5 in the SH and for wavenumber 6 in the NH, whereas wavenumbers 7 and 8 exhibit a single preferred phase position in the NH. Composite plots of meridional wind and temperature anomalies during periods when the resonating wave is in the preferred phase position indicate those regions that are most likely to experience heat extremes. These regions include western North America, western Europe, and central Eurasia in the NH and Patagonia and Australia in the SH.

Funder

Bundesministerium für Bildung und Forschung

Deutscher Akademischer Austauschdienst

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3