A Regime Perspective on the North Atlantic Eddy-Driven Jet Response to Sudden Stratospheric Warmings

Author:

Maycock Amanda C.1,Masukwedza Gibbon I. T.2,Hitchcock Peter3,Simpson Isla R.4

Affiliation:

1. School of Earth and Environment, University of Leeds, Leeds, United Kingdom

2. School of Earth and Environment, University of Leeds, Leeds, United Kingdom, and Zimbabwe Meteorological Services Department, Harare, Zimbabwe

3. Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, New York

4. Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, Colorado

Abstract

AbstractChanges to the preferred states, or regime behavior, of the North Atlantic eddy-driven jet (EDJ) following a major sudden stratospheric warming (SSW) is examined using a large ensemble experiment from the Canadian Middle Atmosphere Model in which the stratosphere is nudged toward an SSW. In the 3 months following the SSW (January–March), the North Atlantic EDJ shifts equatorward by ~3°, on average; this arises from an increased occurrence of the EDJ’s south regime and reductions in its north and central regimes. Qualitatively similar behavior is shown in a reanalysis dataset. We show that under SSW conditions the south regime becomes more persistent and that this can explain the overall increase in the EDJ latitude decorrelation time scale. A cluster analysis reveals that, following the SSW, the south EDJ regime is characterized by weaker low-level baroclinicity and eddy heat fluxes in the North Atlantic Ocean. We hypothesize, therefore, that the increased persistence of the south regime is related to the weaker baroclinicity leading to slower growth rates of the unstable modes and hence a slower buildup of eddy heat flux, which has been shown to precede EDJ transitions. In the North Atlantic sector, the surface response to the SSW projects onto a negative North Atlantic Oscillation (NAO) pattern, with almost no change in the east Atlantic (EA) pattern. This behavior appears to be distinct from the modeled intrinsic variability in the EDJ, where the jet latitude index captures variations in both the NAO and EA patterns. The results offer new insight into the mechanisms for stratosphere–troposphere coupling following SSWs.

Funder

Natural Environment Research Council

Leverhulme Trust

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3