The Efficiency of the Hadley Cell Response to Wide Variations in Ocean Heat Transport

Author:

Rencurrel M. Cameron1,Rose Brian E. J.1

Affiliation:

1. Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York

Abstract

AbstractThe Hadley cell (HC) plays a key role in the climate response to variations in ocean heat transport (OHT). Increased OHT is characterized by both a robust slowdown of this overturning circulation, with consequent changes in cloudiness driving the climate response, and a compensating reduction in the atmospheric heat transport (AHT). Here a suite of slab-ocean aquaplanet GCM simulations is used to study the robustness of mechanisms driving changes in HC mass and energy transport across a wide range of idealized spatial patterns of OHT. The HC response is intrinsically related to both the spatial pattern of OHT and the dynamical mechanisms driving the slowdown of the cell. The reduced energy flux of the HC is associated with reductions in both the mass flux and the gross moist stability (GMS) of the cell in all cases. However, when OHT convergence patterns are confined to the subtropics and equatorward thereof (i.e., subtropical overturning cells), the circulation response is largely momentum-conserving in nature when compared to OHT convergence patterns that extend into the midlatitudes, resulting in a deformation of the anomalous streamfunction following angular momentum contours. The effects of this deformation are quantified through a simple, yet novel approach of splitting the streamfunction anomalies into their “speed” and “shape” components. The tilt of the outer branch of the streamfunction anomaly dampens the direct climate effects of the slowdown of the cell while enhancing the change in GMS, effectively decoupling the change in the energy flux from the slowdown.

Funder

National Science Foundation

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3