Examining Internal and External Contributors to Greenland Climate Variability Using CCSM3

Author:

Andres Heather J.1,Peltier W. R.1

Affiliation:

1. Department of Physics, University of Toronto, Toronto, Ontario, Canada

Abstract

Abstract Greenland climate variability is connected to internal and external sources of global climate forcing in six millennium simulations using Community Climate System Model, version 3. The external forcings employed are consistent with the protocols of Paleoclimate Modelling Intercomparison Project Phase 3. Many simulated internal climate modes are characterized over the years 850–1850, including the Atlantic meridional overturning circulation (AMOC), the Atlantic multidecadal oscillation (AMO), the east Atlantic pattern (EA), the El Niño–Southern Oscillation, the North Atlantic Oscillation (NAO), the North Atlantic sea ice extent, and the Pacific decadal oscillation (PDO). Lagged correlation and multivariate regression methods connect Greenland temperatures and precipitation to these internal modes and external sources of climate variability. Greenland temperature and precipitation are found to relate most strongly to North Atlantic sea ice extent, the AMO, and the AMOC, that are themselves strongly interconnected. Furthermore, approximately half of the multidecadal variability in Greenland temperature and precipitation are captured through linear relationships with volcanic aerosol optical depth, solar insolation (including total solar irradiance and local orbital variability), the NAO, the EA, and the PDO. Relationships are robust with volcanic aerosol optical depth, solar insolation, and an index related to latitudinal shifts of the North Atlantic jet. Differences attributable to model resolution are also identified in the results, such as lower variability in the AMOC and Greenland temperature in the higher-resolution simulations. Finally, a regression model is applied to simulations of the industrial period to show that natural sources alone only explain the variability in simulated Greenland temperature and precipitation up to the 1950s and 1970s, respectively.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3