Change of the Global Ocean Vertical Heat Transport over 1993–2010

Author:

Liang Xinfeng1ORCID,Piecuch Christopher G.2,Ponte Rui M.2,Forget Gael3,Wunsch Carl3,Heimbach Patrick4

Affiliation:

1. College of Marine Science, University of South Florida, St. Petersburg, Florida

2. Atmospheric and Environmental Research, Lexington, Massachusetts

3. Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts

4. Institute for Computational Engineering and Science, The University of Texas at Austin, Austin, Texas

Abstract

A dynamically and data-consistent ocean state estimate during 1993–2010 is analyzed for bidecadal changes in the mechanisms of heat exchange between the upper and lower oceans. Many patterns of change are consistent with prior studies. However, at various levels above 1800 m the global integral of the change in ocean vertical heat flux involves the summation of positive and negative regional contributions and is not statistically significant. The nonsignificance of change in the global ocean vertical heat transport from an ocean state estimate that provides global coverage and regular sampling, spatially and temporally, raises the question of whether an adequate observational database exists to assess changes in the upper ocean heat content over the past few decades. Also, whereas the advective term largely determines the spatial pattern of the change in ocean vertical heat flux, its global integral is not significantly different from zero. In contrast, the diffusive term, although regionally weak except in high-latitude oceans, produces a statistically significant extra downward heat flux during the 2000s. This result suggests that besides ocean advection, ocean mixing processes, including isopycnal and diapycnal as well as convective mixing, are important for the decadal variation of the heat exchange between upper and deep oceans as well. Furthermore, the analyses herein indicate that focusing on any particular region in explaining changes of the global ocean heat content is misleading.

Funder

National Aeronautics and Space Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference40 articles.

1. Adcroft, A., C. Hill, J. M. Campin, J. Marshall, and P. Heimbach, 2004: Overview of the formulation and numerics of the MIT GCM. Proc. ECMWF Seminar on Recent Developments in Numerical Methods for Atmospheric and Ocean Modelling, Shinfield Park, Reading, United Kingdom, ECMWF, 139–150.

2. Evaluation of the ECMWF ocean reanalysis system ORAS4

3. Low-Frequency SST and Upper-Ocean Heat Content Variability in the North Atlantic

4. Determining the Origins of Advective Heat Transport Convergence Variability in the North Atlantic

5. Quantifying recent acceleration in sea level unrelated to internal climate variability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3