Reconstruction of Summer Sea Level Pressure over East Asia since 1470

Author:

Wei Fengying1,Hu Lei2,Chen Guanjun3,Li Qian1,Xie Yu4

Affiliation:

1. State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China

2. Department of Oceanography, Texas A&M University, College Station, Texas

3. State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, and Graduate University of Chinese Academy of Sciences, Beijing, China

4. Department of Atmospheric Sciences, Texas A&M University, College Station, Texas

Abstract

Abstract A close relationship between sea level pressure (SLP) over East Asia and precipitation indices (PIs) in eastern China was observed in the summers (June–August) of 1850–2008 using singular value decomposition (SVD) analysis. To investigate this relationship over a longer period, the SLP fields were reconstructed back to 1470 based on a mathematical model and the historical precipitation indices of eastern China. A cross-validation test of independent samples suggests that the reconstructed SLPs are statistically acceptable. According to the first three predominant SVD modes of the SLP field, three SLP index series (SLPI1–SLPI3) were developed to quantify the thermodynamic differences among the critical SLP centers of East Asia. Both SLPI1 and SLPI2 are highly correlated with the East Asian summer monsoon index, whereas SLPI3 is related to the index of Eurasian meridional atmospheric circulation. The temporal scales of SLP indices were examined during 1470–2008 using the wavelet power spectra. Results indicate that there is significant variance at a 2–5-yr band in the power spectra of the three SLP indices, suggesting SLPI1–SLPI3 have evident interannual variability. Moreover, the wavelet power spectra of SLPI1 and SLPI2 show significantly higher power at the 8–12-yr scale from 1470 to 1750 and at the 60–90-yr scale after 1750. For SLPI3, besides the interannual variability, it has additional periodical variability of 6–11 and 23–33 yr.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3