Statistical Error Decomposition of Regional-Scale Climatological Precipitation Estimates from the Tropical Rainfall Measuring Mission (TRMM)

Author:

Fisher Brad L.1

Affiliation:

1. Laboratory for Atmospheres and Science Systems and Applications, NASA Goddard Space Flight Center, Greenbelt, Maryland

Abstract

Abstract Monthly rainfall estimates inferred from the NASA Tropical Rainfall Measuring Mission (TRMM) satellite contain errors due to discrete temporal sampling and remote spaceborne rain retrievals. This paper develops a regional-scale error model that uses the rain information in the ground data to disentangle the sampling and retrieval errors in the satellite estimate statistically. The proposed method computes a mean rain rate from monthly rainfall statistics for each TRMM rain sensor by subsampling high-resolution ground-based rain data at satellite overpass times. This additional rain-subsampled parameter plays an essential role in the statistical decomposition of the total error distribution into its sampling and retrieval error components. Using the statistical formalism developed in this study, an error analysis was performed on 5 yr of monthly rain estimates produced by the TRMM Microwave Imager (TMI) and precipitation radar (PR) rain sensors aboard TRMM over a quasi 2° × 2° region of the TRMM ground validation (GV) site at Melbourne, Florida. Annual retrieval and sampling error statistics were computed for the TMI and PR using monthly rainfall estimates derived from two independent ground-based sensors: a regional rain gauge network and the Next-Generation Weather Radar (NEXRAD). Subsampled ground-based rainfall estimates produced for the radar and the gauges were highly correlated with the TMI and PR rainfall estimates, and both GV sensors produced relatively consistent error estimates. The PR-to-TMI sampling error ratio was equal to about 1.3, which was in close agreement with prelaunch predications, and the TMI-to-PR retrieval error ratio was about 2.0. For the TMI, a seasonally alternating rainfall bias was also observed that was negative during winter and positive during summer.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3