Probabilistic Estimates of Transient Climate Sensitivity Subject to Uncertainty in Forcing and Natural Variability

Author:

Padilla Lauren E.1,Vallis Geoffrey K.2,Rowley Clarence W.1

Affiliation:

1. Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey

2. GFDL, Princeton University, Princeton, New Jersey

Abstract

Abstract In this paper, the authors address the impact of uncertainty on estimates of transient climate sensitivity (TCS) of the globally averaged surface temperature, including both uncertainty in past forcing and internal variability in the climate record. This study provides a range of probabilistic estimates of the TCS that combine these two sources of uncertainty for various underlying assumptions about the nature of the uncertainty. The authors also provide estimates of how quickly the uncertainty in the TCS may be expected to diminish in the future as additional observations become available. These estimates are made using a nonlinear Kalman filter coupled to a stochastic, global energy balance model, using the filter and observations to constrain the model parameters. This study verifies that model and filter are able to emulate the evolution of a comprehensive, state-of-the-art atmosphere–ocean general circulation model and to accurately predict the TCS of the model, and then apply the methodology to observed temperature and forcing records of the twentieth century. For uncertainty assumptions best supported by global surface temperature data up to the present time, this paper finds a most likely present-day estimate of the transient climate sensitivity to be 1.6 K, with 90% confidence the response will fall between 1.3 and 2.6 K, and it is estimated that this interval may be 45% smaller by the year 2030. The authors calculate that emissions levels equivalent to forcing of less than 475 ppmv CO2 concentration are needed to ensure that the transient temperature response will not exceed 2 K with 95% confidence. This is an assessment for the short-to-medium term and not a recommendation for long-term stabilization forcing; the equilibrium temperature response to this level of CO2 may be much greater. The flat temperature trend of the last decade has a detectable but small influence on TCS. This study describes how the results vary if different uncertainty assumptions are made and shows they are robust to variations in the initial prior probability assumptions.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3