Dynamics of Interannual Variability in Summer Precipitation over East Asia*

Author:

Kosaka Yu1,Xie Shang-Ping2,Nakamura Hisashi3

Affiliation:

1. International Pacific Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, Hawaii

2. Department of Meteorology, and International Pacific Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, Hawaii

3. Department of Earth and Planetary Science, The University of Tokyo, Tokyo, and Research Institute for Global Change, JAMSTEC, Yokohama, Japan

Abstract

Abstract The summertime mei-yu–baiu rainband over East Asia displays considerable interannual variability. A singular value decomposition (SVD) analysis for interannual variability reveals that precipitation anomalies over the mei-yu–baiu region are accompanied by in situ anomalies of midtropospheric horizontal temperature advection. Anomalous warm (cool) advection causes increased (decreased) mei-yu–baiu precipitation locally by inducing adiabatic ascent (descent). The anomalous precipitation acts to reinforce the vertical motion, forming a feedback system. By this mechanism, the remotely forced anomalous atmospheric circulation can induce changes in mei-yu–baiu precipitation. The quasi-stationary precipitation anomalies induced by this mechanism are partially offset by transient eddies. The SVD analysis also reveals the association of mei-yu–baiu precipitation anomalies with several teleconnection patterns, suggesting remote induction mechanisms. The Pacific–Japan (PJ) teleconnection pattern, which is associated with anomalous convection over the tropical western North Pacific, contributes to mei-yu–baiu precipitation variability throughout the boreal summer. The PJ pattern mediates influences of the El Niño–Southern Oscillation in preceding boreal winter on mei-yu–baiu precipitation. In early summer, the leading covariability pattern between precipitation and temperature advection also features the Silk Road pattern—a wave train along the summertime Asian jet—and another wave train pattern to the north along the polar-front jet that often leads to the development of the surface Okhotsk high.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3