Historical Analysis of U.S. Tornado Fatalities (1808–2017): Population, Science, and Technology

Author:

Agee Ernest1,Taylor Lindsey1

Affiliation:

1. Department of Earth, Atmospheric and Planetary Sciences, Purdue University, West Lafayette, Indiana

Abstract

Abstract The record of tornado fatalities in the United States for over two centuries (1808–2017) and decadal census records have been examined to search for historical trends. Particular attention has been given to the response to population growth and expansion into the tornado-prone regions of the country. The region selected includes the Tornado Alley of the central Great Plains, the Dixie Alley in the southeastern states, and the adjoining states in the Midwest that collectively encompass a 21-state rectangular region. The data record has been divided into two subintervals, Era A (1808–1915) and Era B (1916–2017), each of which consists of three equal-length periods. Era A is characterized by a growing and westward expanding population along with a basic absence of scientific knowledge, technology, and communications (for prediction, detection, and warning). This is followed by a renaissance of discovery and advancement in Era B that contributes to saving lives. The aforementioned periods are defined by a set of notable events that help to define the respective periods. A death per population index (DPI) is used to evaluate the 21 states in each era; there is a rise of mean DPI values to a maximum of 1.50 at the end of Era A and a subsequent fall to 0.21 at the end of Era B. It is also shown for all three periods in Era B that the deadliest tornado states, in ranked order, are Arkansas, Mississippi, Alabama, and Oklahoma. Suggestions are presented for ways to continue the decreasing trend in DPI, which would imply that the death rate increase is not as fast as the rate of population increase (or would even imply a decreasing death rate).

Funder

Purdue Climate Change Research Center, Purdue University

Publisher

American Meteorological Society

Subject

Atmospheric Science,Social Sciences (miscellaneous),Global and Planetary Change

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3