Addressing Fractional Dimensionality in the Application of Weather Index Insurance and Climate Risk Financing in Agricultural Development: A Dynamic Triggering Approach

Author:

Turvey Calum G.1,Shee Apurba2ORCID,Marr Ana2

Affiliation:

1. Cornell University, Ithaca, New York

2. University of Greenwich, Chatham Maritime, United Kingdom

Abstract

Abstract Climate risk financing programs in agriculture have caught the attention of researchers and policy makers over the last decade. Weather index insurance has emerged as a promising market-based risk financing mechanism. However, to develop a suitable weather index insurance mechanism it is essential to incorporate the distribution of underlying weather and climate risks to a specific event model that can minimize intraseasonal basis risk. In this paper we investigate the erratic nature of rainfall patterns in Kenya using Climate Hazards Group Infrared Precipitation with Station Data (CHIRPS) rainfall data from 1983 to 2017. We find that the patterns of rainfall are fractional, both erratic and persistent, which is consistent with the Noah and Joseph effects that are well known in mathematics. The erratic nature of rainfall emerges from the breakdown of the convergence to a normal distribution. Instead we find that the distribution about the average is approximately lognormal, with an almost 50% higher chance of deficit rainfall below the mean than adequate rainfall above the mean. We find that the rainfall patterns obey the Hurst law and that the measured Hurst coefficients for seasonal rainfall pattern across all years range from a low of 0.137 to a high above 0.685. To incorporate the erratic and persistent nature of seasonal rainfall, we develop a new approach to weather index insurance based upon the accumulated rainfall in any 21-day period falling below 60% of the long-term average for that same 21-day period. We argue that this approach is more satisfactory to matching drought conditions within and between various phenological stages of growth.

Funder

Economic and Social Research Council

Publisher

American Meteorological Society

Subject

Atmospheric Science,Social Sciences (miscellaneous),Global and Planetary Change

Reference46 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3