Lightning Occurrence and Casualties in U.S. National Parks

Author:

Holle Ronald L.1,Brooks William A.1,Cummins Kenneth L.2

Affiliation:

1. a Vaisala, Inc., Tucson, Arizona

2. b The University of Arizona, Tucson, Arizona

Abstract

AbstractNational park visitors travel primarily to view natural features while outdoors; however, visits often occur in warmer months when lightning is present. This study uses cloud-to-ground flashes from 1999 to 2018 and cloud-to-ground strokes from 2009 to 2018 from the National Lightning Detection Network to identify lightning at the 46 contiguous United States national parks larger than 100 km2. The largest density is 6.10 flashes per kilometer squared per year within Florida’s Everglades, and the smallest is near zero in Pinnacles National Park. The six most-visited parks are Great Smoky Mountains, Grand Canyon, Rocky Mountain, Zion, Yosemite, and Yellowstone. For each of these parks, lightning data are described by frequency and location as well as time of year and day. The four parks west of the Continental Divide have most lightning from 1 July to 15 September and from 1100 to 1900 LST. Each park has its own spatial lightning pattern that is dependent on local topography. Deaths and injuries from lightning within national parks have the same summer afternoon dominance shown by lightning data. Most casualties occur to people visiting from outside the parks’ states. The most common activities and locations are mountain climbing, hiking, and viewing canyons from overlooks. Lightning fatality risk, the product of areal visitor and CG flash densities, shows that many casualties are not in parks with high risk, while very small risk indicates parks where lightning awareness efforts can be minimized. As a result, safety advice should focus on specific locations such as canyon rims, mountains, and exposed high-altitude roads where lightning-vulnerable activities are engaged in by many visitors.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Social Sciences (miscellaneous),Global and Planetary Change

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Recurrent Lightning Spots: Where Lightning Strikes More Than Twice;Journal of Geophysical Research: Atmospheres;2024-03

2. Lightning Research in Arizona;Flashes of Brilliance;2023

3. Human Impacts, Damages, and Benefits from Lightning in Arizona;Flashes of Brilliance;2023

4. Arizona is the Lightning Photography Capital of the U.S;Flashes of Brilliance;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3