Data Quality Control Based on Self-Consistency

Author:

Steinacker Reinhold1,Mayer Dieter1,Steiner Andrea1

Affiliation:

1. Department of Meteorology and Geophysics, University of Vienna, Vienna, Austria

Abstract

Abstract Conducting meteorological measurements, one is always confronted with a wide variety of different types of errors and with the decision of how to correct data for further use, if necessary. The selection of an adequate quality control (QC) procedure out of a wide range of methodologies depends on the properties of the observed parameter such as spatial or temporal consistency. But the intended data application (e.g., model-independent data analysis) or the availability of prior knowledge also has to be taken into account. The herein-presented self-consistent and model-independent QC process makes use of the spatial and temporal consistency of meteorological parameters. It is applicable to measurements featuring a high degree of autocorrelation with regard to the resolution of the observational network in space and time. The presented QC procedure can mathematically be expressed as an optimization problem minimizing the curvature of the analyzed field. This results in a matrix equation that can be solved without needing to converge iterations. Based on the resulting deviations and, if applied, on their impacts on the cost function, station values are accepted, corrected, or identified as outliers and hence dismissed. Furthermore, it is pointed out that this method is able to handle complicated station distributions, such as clustered stations or inhomogeneous station densities. This QC method is not only an appropriate tool for case studies but also for model validation and has been proving itself as a preprocessing tool for operational meso- and micrometeorological analyses.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference20 articles.

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3