The Predictive Skill and the Most Predictable Pattern in the Tropical Atlantic: The Effect of ENSO

Author:

Hu Zeng-Zhen1,Huang Bohua2

Affiliation:

1. Center for Ocean–Land–Atmosphere Studies, Calverton, Maryland

2. Center for Ocean–Land–Atmosphere Studies, Calverton, Maryland, and Department of Climate Dynamics, College of Science, George Mason University, Fairfax, Virginia

Abstract

Abstract This work investigates the predictive skill and most predictable pattern in the NCEP Climate Forecast System (CFS) in the tropical Atlantic Ocean. The skill is measured by the sea surface temperature (SST) anomaly correlation between the predictions and the corresponding analyses, and the most predictable patterns are isolated by an empirical orthogonal function analysis with a maximized signal-to-noise ratio. On average, for predictions with initial conditions (ICs) of all months, the predictability of SST is higher in the west than in the east. The highest skill is near the tropical Brazilian coast and in the Caribbean Sea, and the lowest skill occurs in the eastern coast. Seasonally, the skill is higher for predictions with ICs in summer or autumn and lower for those with ICs in spring. The CFS poorly predicts the meridional gradient in the tropical Atlantic Ocean. The superiority of the CFS predictions to the persistence forecasts depends on IC month, region, and lead time. The CFS prediction is generally better than the corresponding persistence forecast when the lead time is longer than 3 months. The most predictable pattern of SST in March has the same sign in almost the whole tropical Atlantic. The corresponding pattern in March is dominated by the same sign for geopotential height at 200 hPa in most of the domain and by significant opposite variation for precipitation between the northwestern tropical North Atlantic and the regions from tropical South America to the southwestern tropical North Atlantic. These predictable signals mainly result from the influence of the El Niño–Southern Oscillation (ENSO). The significant values in the most predictable pattern of precipitation in the regions from tropical South America to the southwestern tropical North Atlantic in March are associated with excessive divergence (convergence) at low (high) levels over these regions in the CFS. For the CFS, the predictive skill in the tropical Atlantic Ocean is largely determined by its ability to predict ENSO. This is due to the strong connection between ENSO and the most predictable patterns in the tropical Atlantic Ocean in the model. The higher predictive skill of tropical North Atlantic SST is consistent with the ability of the CFS to predict ENSO on interseasonal time scales, particularly for the ICs in warm months from March to October. In the southeastern ocean, the systematic warm bias is a crucial factor leading to the low skill in this region.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference51 articles.

1. Optimal filtering in singular spectrum analysis.;Allen;Phys. Lett.,1997

2. Behringer, D., and Y.Xue, 2004: Evaluation of the global ocean data assimilation system at NCEP: The Pacific Ocean. Preprints, Eighth Symp. on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface, Seattle, WA, Amer. Meteor. Soc., CD-ROM, 2.3.

3. An improved coupled model for ENSO prediction and implications for ocean initialization. Part I: The ocean data assimilation system.;Behringer;Mon. Wea. Rev.,1998

4. Warm events in the tropical Atlantic.;Carton;J. Phys. Oceanogr.,1994

5. A decadal climate variation in the tropical Atlantic Ocean from thermodynamic air-sea interactions.;Chang;Nature,1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3