Evaluating CMIP5 Model Agreement for Multiple Drought Metrics

Author:

Ukkola A. M.1,Pitman A. J.2,De Kauwe M. G.2,Abramowitz G.1,Herger N.1,Evans J. P.1,Decker M.1

Affiliation:

1. ARC Centre of Excellence for Climate System Science, and Climate Change Research Centre, University of New South Wales, Sydney, New South Wales, Australia

2. Climate Change Research Centre, and ARC Centre of Excellence for Climate Extremes, University of New South Wales, Sydney, New South Wales, Australia

Abstract

Abstract Global climate models play an important role in quantifying past and projecting future changes in drought. Previous studies have pointed to shortcomings in these models for simulating droughts, but systematic evaluation of their level of agreement has been limited. Here, historical simulations (1950–2004) for 20 models from the latest Coupled Model Intercomparison Project (CMIP5) were analyzed for a variety of drought metrics and thresholds using a standardized drought index. Model agreement was investigated for different types of drought (precipitation, runoff, and soil moisture) and how this varied with drought severity and duration. At the global scale, climate models were shown to agree well on most precipitation drought metrics, but systematically underestimated precipitation drought intensity compared to observations. Conversely, simulated runoff and soil moisture droughts varied significantly across models, particularly for intensity. Differences in precipitation simulations were found to explain model differences in runoff and soil moisture drought metrics over some regions, but predominantly with respect to drought intensity. This suggests it is insufficient to evaluate models for precipitation droughts to increase confidence in model performance for other types of drought. This study shows large but metric-dependent discrepancies in CMIP5 for modeling different types of droughts that relate strongly to the component models (i.e., atmospheric or land surface scheme) used in the coupled modeling systems. Our results point to a need to consider multiple models in drought impact studies to account for high model uncertainties.

Funder

ARC Centre of Excellence for Climate Extremes

ARC Centre of Excellence for Climate System Science

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3