Validation of GPM Dual-Frequency Precipitation Radar (DPR) Rainfall Products over Italy

Author:

Petracca M.12,D’Adderio L. P.3,Porcù F.4,Vulpiani G.1,Sebastianelli S.12,Puca S.1

Affiliation:

1. Department of Civil Protection, Presidency of the Council of Ministers, Rome, Italy

2. Institute of Atmospheric Sciences and Climate, Italian National Research Council, Rome, Italy

3. Department of Physics and Earth Science, University of Ferrara, Ferrara, Italy

4. Department of Physics and Astronomy, University of Bologna, Bologna, Italy

Abstract

Abstract The Ka–Ku Dual-Frequency Precipitation Radar (DPR) and the Microwave Imager on board the Global Precipitation Measurement (GPM) mission core satellite have been collecting data for more than 3 years, providing precipitation products over the globe, including oceans and remote areas where ground-based precipitation measurements are not available. The main objective of this work is to validate the GPM-DPR products over a key climatic region with complex orography such as the Italian territory. The performances of the DPR precipitation rate products are evaluated over an 18-month period (July 2015–December 2016) using both radar and rain gauge data. The ground reference network is composed of 22 weather radars and more than 3000 rain gauges. DPR dual-frequency products generally show better performance with respect to the single-frequency (i.e., Ka- or Ku-band only) products, especially when ground radar data are taken as reference. A sensitivity analysis with respect to season and rainfall intensity is also carried out. It was found that the normal scan (NS) product outperforms the high-sensitivity scan (HS) and matched scan (MS) during the summer season. A deeper analysis is carried out to investigate the larger discrepancies between the DPR-NS product and ground reference data. The most relevant improvement of the DPR products’ performance was found by limiting the comparison to the upscaled radar data with a higher quality index. The resulting scores in comparison with ground radars are mean error (ME) = −0.44 mm h−1, RMSE = 3.57 mm h−1, and fractional standard error (FSE) = 142%, with the POD = 65% and FAR = 1% for rainfall above 0.5 mm h−1.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3