Bias Correction of Historical and Future Simulations of Precipitation and Temperature for China from CMIP5 Models

Author:

Yang X.1,Wood E. F.2,Sheffield J.3,Ren L.1,Zhang M.1,Wang Y.1

Affiliation:

1. State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, China

2. Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey

3. Geography and Environment, University of Southampton, Southampton, United Kingdom

Abstract

ABSTRACT In this study, the equidistant cumulative distribution function (EDCDF) quantile-based mapping method was used to develop bias-corrected and downscaled monthly precipitation and temperature for China at 0.5° × 0.5° spatial resolution for the period 1961–2099 for eight CMIP5 GCM simulations. The downscaled dataset was constructed by combining observations from 756 meteorological stations across China with the monthly GCM outputs for the historical (1961–2005) and future (2006–99) periods for the lower (RCP2.6), medium (RCP4.5), and high (RCP8.5) representative concentration pathway emission scenarios. The jackknife method was used to cross validate the performance of the EDCDF method and was compared with the traditional quantile-based matching method (CDF method). This indicated that the performance of the two methods was generally comparable over the historic period, but the EDCDF was more efficient at reducing biases than the CDF method across China. The two methods had similar mean absolute error (MAE) for temperature in January and July. The EDCDF method had a slight advantage over the CDF method for precipitation, reducing the MAE by about 0.83% and 1.2% at a significance level of 95% in January and July, respectively. For future projections, both methods exhibited similar spatial patterns for longer periods (2061–90) under the RCP8.5 scenario. However, the EDCDF was more sensitive to a reduction in variability.

Funder

the National Key Research and Development Program

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3