Roles of Low- and High-Frequency Eddies in the Transitional Process of the Southern Hemisphere Annular Mode

Author:

Shiogama Hideo1,Terao Toru2,Kida Hideji1,Iwashima Tatsuya3

Affiliation:

1. Graduate School of Science, Kyoto University, Kyoto, Japan

2. Faculty of Informatics, Osaka Gakuin University, Osaka, Japan

3. Disaster Prevention Research Institute, Kyoto University, Kyoto, Japan

Abstract

Abstract The effects of low- and high-frequency eddies (time scales longer and shorter than 10 days, respectively) on the transitional processes of the Southern Hemisphere “Annular Mode” are investigated, based on NCEP–NCAR daily reanalysis data for the period 1979–2001. Special attention is focused on the zonal symmetry/asymmetry and the temporal evolution of the eddy forcing. For the poleward transitional process, the effects of low-frequency eddies precede those of high-frequency eddies in driving the jet transition. Quasi-stationary Rossby waves propagating along the polar jet with wavelengths of 7000 km play an important role. The waves, originally come from the Indian Ocean through the waveguide associated with the polar jet, dissipate equatorward over the eastern Pacific Ocean. This anomalous equatorward dissipation of wave activity induces an anomalous poleward momentum flux, which is responsible for changes in the polar jet over the Pacific Ocean during the beginning stage. Following the low-frequency eddy forcing, momentum forcing anomalies due to the high-frequency eddies rapidly appear. This forcing continues to drive the polar jet poleward over the whole of longitude, while the low-frequency eddies have completed their role of inducing the anomalous poleward momentum flux during the earlier stage. For the equatorward transitional events, the roles of the low-frequency eddy forcing differ from that in the poleward ones. Anomalous equatorward momentum fluxes due to low-frequency eddies appear simultaneously with that due to high-frequency eddies. Quasi-stationary Rossby waves with wavelengths of 7000 km propagate southeastward through the waveguide over the Pacific Ocean. The convergence of their wave activity results in the deceleration of the westerlies over the higher latitudes of the Pacific Ocean. On the other hand, the high-frequency eddy forcing contributes to the equatorward jet drift longitudinally over the whole of the hemisphere.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3