Variability of the Southern Hemisphere Winter Split Flow—A Case of Two-Way Reinforcement between Mean Flow and Eddy Anomalies

Author:

Yang Xiaosong1,Chang Edmund K. M.1

Affiliation:

1. ITPA/Marine Sciences Research Center, State University of New York at Stony Brook, Stony Brook, New York

Abstract

Abstract A new split-jet index is defined in this study, and composites based on this index show that the split-flow regime is characterized by a cold–warm–cold tripolar temperature anomaly in the South Pacific that extends equatorward from the Southern Hemisphere (SH) high latitudes, while nonsplit flow occurs when the phase of the tripolar temperature anomaly is reversed. Analyses of the heat budget reveal that the temperature anomalies associated with the split/nonsplit flow are mainly forced by mean flow advection instead of local diabatic heating or convergence of eddy heat fluxes. Localized Eliassen–Palm (E–P) flux diagnostics suggest that the zonal wind anomalies are maintained by the eddy vorticity flux anomalies. These diagnostic results are confirmed by numerical experiments conducted using a stationary wave model forced by observed eddy forcings and diabatic heating anomalies. The model results show that the effects of the vorticity flux dominates over those of the heat flux, which tend to dampen the flow anomalies, and that tropical diabatic heating anomalies are not important in maintaining the split-/nonsplit-flow anomalies. The organization of high-frequency eddies by the low-frequency split/nonsplit jet is also studied. Two sets of experiments using a linear storm-track model initialized with random initial perturbations superposed upon the split- and nonsplit-jet basic state, respectively, have been conducted. Model results show that the storm-track anomalies that are organized by the split/nonsplit jet are consistent with observed storm-track anomalies, thus demonstrating that the low-frequency split/nonsplit jet acts to organize the high-frequency eddies. The results of this paper directly establish that there is a two-way reinforcement between eddies and mean flow anomalies in the low-frequency variability of the SH winter split jet.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3