An Improved Method for Estimating Global Evapotranspiration Based on Satellite Determination of Surface Net Radiation, Vegetation Index, Temperature, and Soil Moisture

Author:

Wang Kaicun1,Liang Shunlin2

Affiliation:

1. Department of Geography, University of Maryland, College Park, College Park, Maryland, and Laboratory for Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

2. Department of Geography, University of Maryland, College Park, College Park, Maryland

Abstract

Abstract A simple and accurate method to estimate regional or global latent heat of evapotranspiration (ET) from remote sensing data is essential. The authors proposed a method in an earlier study that utilized satellite-determined surface net radiation (Rn), a vegetation index, and daytime-averaged/daily maximum air temperature (Ta) or land surface temperature (Ts) data. However, the influence of soil moisture (SM) on ET was not considered and is addressed in this paper by incorporating the diurnal Ts range (DTsR). ET, measured by the energy balance Bowen ratio method at eight enhanced facility sites on the southern Great Plains in the United States and by the eddy covariance method at four AmeriFlux sites during 2001–06, is used to validate the improved method. Site land cover varies from grassland, native prairie, and cropland to deciduous forest and evergreen forest. The correlation coefficient between the measured and predicted 16-day daytime-averaged ET using a combination of Rn, enhanced vegetation index (EVI), daily maximum Ts, and DTsR is about 0.92 for all the sites, the bias is −1.9 W m−2, and the root-mean-square error (RMSE) is 28.6 W m−2. The sensitivity of the revised method to input data error is small. Implemented here is the revised method to estimate global ET using diurnal Ta range (DTaR) instead of DTsR because DTsR data are not available yet, although DTaR-estimated ET is less accurate than DTsR-estimated ET. Global monthly ET is calculated from 1986 to 1995 at a spatial resolution of 1° × 1° from the International Satellite Land Surface Climatology Project (ISLSCP) Initiative II global interdisciplinary monthly dataset and is compared with the 15 land surface model simulations of the Global Soil Wetness Project-2. The results of the comparison of 118 months of global ET show that the bias is 4.5 W m−2, the RMSE is 19.8 W m−2, and the correlation coefficient is 0.82. Incorporating DTaR distinctively improves the accuracy of the estimate of global ET.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3