Diabatic Heating and Cooling Rates Derived from In Situ Microphysics Measurements: A Case Study of a Wintertime U.K. Cold Front

Author:

Dearden C.1,Connolly P. J.1,Lloyd G.1,Crosier J.1,Bower K. N.1,Choularton T. W.1,Vaughan G.1

Affiliation:

1. Centre for Atmospheric Science, University of Manchester, Manchester, United Kingdom

Abstract

In situ measurements associated with the passage of a kata cold front over the United Kingdom on 29 November 2011 are used to initialize a Lagrangian parcel model for the purpose of calculating rates of diabatic heating and cooling associated with the phase changes of water within the cloud system. The parcel model calculations are performed with both bin-resolved and bulk treatments of microphysical processes. The in situ data from this case study reveal droplet number concentrations up to 100 cm−3, with planar ice crystals detected at cloud top, as well as columnar crystals produced by rime splinter ejection within the prefrontal warm sector. The results show that in terms of magnitude, the most significant rates of diabatic heating and cooling are produced by condensation growth of liquid water within the convective updrafts at the leading edge of the front. The peak temperature tendencies associated with condensation are typically found to be at least an order of magnitude larger than those associated with the ice phase, although the cooling effect from sublimation and melting occurs over a wide region. The parcel model framework is used in conjunction with the observations to assess the suitability of existing bulk microphysical treatments, of the kind used in operational weather forecast models. It is found that the assumption of spherical ice crystals (with diameters equal to the maximum dimension of those sampled), along with the use of negative exponential functions to describe ice particle size distributions, can lead to an overestimation of local diabatic heating and cooling rates by a factor of 2 or more.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3