Comparison of Hybrid-4DEnVar and Hybrid-4DVar Data Assimilation Methods for Global NWP

Author:

Lorenc Andrew C.1,Bowler Neill E.1,Clayton Adam M.1,Pring Stephen R.1,Fairbairn David2

Affiliation:

1. Met Office, Exeter, United Kingdom

2. University of Surrey, Guildford, Surrey, and Met Office, Exeter, United Kingdom

Abstract

Abstract The Met Office has developed an ensemble-variational data assimilation method (hybrid-4DEnVar) as a potential replacement for the hybrid four-dimensional variational data assimilation (hybrid-4DVar), which is the current operational method for global NWP. Both are four-dimensional variational methods, using a hybrid combination of a fixed climatological model of background error covariances with localized covariances from an ensemble of current forecasts designed to describe the structure of “errors of the day.” The fundamental difference between the methods is their modeling of the time evolution of errors within each data assimilation window: 4DVar uses a linear model and its adjoint and 4DEnVar uses a localized linear combination of nonlinear forecasts. Both hybrid-4DVar and hybrid-4DEnVar beat their three-dimensional versions, which are equivalent, in NWP trials. With settings based on the current operational system, hybrid-4DVar performs better than hybrid-4DEnVar. Idealized experiments designed to compare the time evolution of covariances in the methods are described: the basic 4DEnVar represents the evolution of ensemble errors as well as 4DVar. However, 4DVar also represents the evolution of errors from the climatological covariances, whereas 4DEnVar does not. This difference is the main cause of the superiority of hybrid-4DVar. Another difference is that the authors’ 4DVar explicitly penalizes rapid variations in the analysis increment trajectory, while the authors’ 4DEnVar contains no dynamical constaints on imbalance. The authors describe a four-dimensional incremental analysis update (4DIAU) method that filters out the high-frequency oscillations introduced by the poorly balanced 4DEnVar increments. Possible methods for improving hybrid-4DEnVar are discussed.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 157 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3