Diurnal Coupling in the Tropical Oceans of CCSM3

Author:

Danabasoglu Gokhan1,Large William G.1,Tribbia Joseph J.1,Gent Peter R.1,Briegleb Bruce P.1,McWilliams James C.2

Affiliation:

1. National Center for Atmospheric Research,* Boulder, Colorado

2. National Center for Atmospheric Research,* Boulder, Colorado, and Department of Atmospheric Sciences, and Institute of Geophysics and Planetary Physics, University of California, Los Angeles, Los Angeles, California

Abstract

Abstract New features that may affect the behavior of the upper ocean in the Community Climate System Model version 3 (CCSM3) are described. In particular, the addition of an idealized diurnal cycle of solar forcing where the daily mean solar radiation received in each daily coupling interval is distributed over 12 daylight hours is evaluated. The motivation for this simple diurnal cycle is to improve the behavior of the upper ocean, relative to the constant forcing over each day of previous CCSM versions. Both 1- and 3-h coupling intervals are also considered as possible alternatives that explicitly resolve the diurnal cycle of solar forcing. The most prominent and robust effects of all these diurnal cycles are found in the tropical oceans, especially in the Pacific. Here, the mean equatorial sea surface temperature (SST) is warmed by as much as 1°C, in better agreement with observations, and the mean boundary layer depth is reduced. Simple rectification of the diurnal cycle explains about half of the shallowing, but less than 0.1°C of the warming. The atmospheric response to prescribed warm SST anomalies of about 1°C displays a very different heat flux signature. The implication, yet to be verified, is that large-scale air–sea coupling is a prime mechanism for amplifying the rectified, daily averaged SST signals seen by the atmosphere. Although the use of upper-layer temperature for SST in CCSM3 underestimates the diurnal cycle of SST, many of the essential characteristics of diurnal cycling within the equatorial ocean are reproduced, including boundary layer depth, currents, and the parameterized vertical heat and momentum fluxes associated with deep-cycle turbulence. The conclusion is that the implementation of an idealized diurnal cycle of solar forcing may make more frequent ocean coupling and its computational complications unnecessary as improvements to the air–sea coupling in CCSM3 continue. A caveat here is that more frequent ocean coupling tends to reduce the long-term cooling trends typical of CCSM3 by heating already too warm ocean depths, but longer integrations are needed to determine robust features. A clear result is that the absence of diurnal solar forcing of the ocean has several undesirable consequences in CCSM3, including too large ENSO variability, much too cold Pacific equatorial SST, and no deep-cycle turbulence.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 164 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3