A Simple Model to Predict Scalar Dispersion within a Successively Thinned Loblolly Pine Canopy

Author:

Edburg Steven L.1,Allwine Gene1,Lamb Brian1,Stock David1,Thistle Harold2,Peterson Holly3,Strom Brian4

Affiliation:

1. Washington State University, Pullman, Washington

2. U.S. Department of Agriculture Forest Service, Morgantown, West Virginia

3. Montana College of Mineral Science and Technology, Butte, Montana

4. U.S. Department of Agriculture Forest Service, Pineville, Louisiana

Abstract

AbstractBark beetles kill millions of acres of trees in the United States annually by using chemical signaling to attack host trees en masse. As an attempt to control infestations, forest managers use synthetic semiochemical sources to attract beetles to traps and/or repel beetles from high-value resources such as trees and stands. The purpose of this study was to develop a simple numerical technique that may be used by forest managers as a guide in the placement of synthetic semiochemicals. The authors used a one-dimensional, one-equation turbulence model (k–lm) to drive a three-dimensional transport and dispersion model. Predictions were compared with observations from a unique tracer gas experiment conducted in a successively thinned loblolly pine canopy. Predictions of wind speed and turbulent kinetic energy compared well with observations. Scalar concentration was predicted well and trends of maximum observed concentration versus leaf area index were captured within 30 m of the release location. A hypothetical application of the numerical technique was conducted for a 12-day period to demonstrate the model’s usefulness to forest managers.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference20 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3