An Innovative Calibration Method for the Inversion of Satellite Observations

Author:

Aires Filipe1,Bernardo Frédéric2,Brogniez Héléne3,Prigent Catherine4

Affiliation:

1. Laboratoire de Météorologie Dynamique/IPSL/CNRS, Université de Paris VI/Jussieu, and Laboratoire de l’Etude du Rayonnement et de la Matière en Astrophysique, CNRS, Observatoire de Paris, Paris, France

2. Laboratoire de Météorologie Dynamique/IPSL/CNRS, Université de Paris VI/Jussieu, Paris, France

3. Laboratoire Atmosphères, Milieux, Observations Spatiales/IPSL/CNRS, Paris, France

4. Laboratoire de l’Etude du Rayonnement et de la Matière en Astrophysique, CNRS, Observatoire de Paris, Paris, France

Abstract

Abstract Retrieval schemes often use two important components: 1) a radiative transfer model (RTM) inside the retrieval procedure or to construct the learning dataset for the training of the statistical retrieval algorithms and 2) a numerical weather prediction (NWP) model to provide a first guess or, again, to construct a learning dataset. This is particularly true in operational centers. As a consequence, any physical retrieval or similar method is limited by inaccuracies in the RTM and NWP models on which it is based. In this paper, a method for partially compensating for these errors as part of the sensor calibration is presented and evaluated. In general, RTM/NWP errors are minimized as best as possible prior to the training of the retrieval method, and then tolerated. The proposed method reduces these unknown and generally nonlinear residual errors by training a separate preprocessing neural network (NN) to produce calibrated radiances from real satellite data that approximate those radiances produced by the “flawed” NWP and RTM models. The final “compensated/flawed” retrieval assures better internal consistency of the retrieval procedure and then produces more accurate results. To the authors’ knowledge, this type of NN model has not been used yet for this purpose. The calibration approach is illustrated here on one particular application: the retrieval of atmospheric water vapor from the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) and the Humidity Sounder for Brazil (HSB) measurements for nonprecipitating scenes, over land and ocean. Before being inverted, the real observations are “projected” into the space of the RTM simulation space from which the retrieval is designed. Validation of results is performed with radiosonde measurements and NWP analysis departures. This study shows that the NN calibration of the AMSR-E/HSB observations improves water vapor inversion, over ocean and land, for both clear and cloudy situations. The NN calibration is efficient and very general, being applicable to a large variety of problems. The nonlinearity of the NN allows for the calibration procedure to be state dependent and adaptable to specific cases (e.g., the same correction will not be applied to medium-range measurement and to extreme conditions). Its multivariate nature allows for a full exploitation of the complex correlation structure among the instrument channels, making the calibration of each single channel more robust. The procedure would make it possible to project the satellite observations in a reference observational space defined by radiosonde measurements, RTM simulations, or other instrument observational space.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3