Observed and Modeled Growing-Season Diurnal Precipitable Water Vapor in South-Central Canada

Author:

Hanesiak John1,Melsness Mark2,Raddatz Richard3

Affiliation:

1. Department of Environment and Geography, and Centre for Earth Observation Science, University of Manitoba, Winnipeg, Manitoba, Canada

2. Prairie and Arctic Storm Prediction Centre, Environment Canada, Winnipeg, Manitoba, Canada

3. Department of Soil Science, and Centre for Earth Observation Science, University of Manitoba, Winnipeg, Manitoba, Canada

Abstract

Abstract High-temporal-resolution total-column precipitable water vapor (PWV) was measured using a Radiometrics Corporation WVR-1100 Atmospheric Microwave Radiometer (AMR). The AMR was deployed at the University of Manitoba in Winnipeg, Canada, during the 2003 and 2006 growing seasons (mid-May–end of August). PWV data were examined 1) to document the diurnal cycle of PWV and to provide insight into the various processes controlling this cycle and 2) to assess the accuracy of the Canadian regional Global Environmental Multiscale (GEM) model analysis and forecasts (out to 36 h) of PWV. The mean daily PWV was 22.6 mm in 2003 and 23.8 mm in 2006, with distinct diurnal amplitudes of 1.5 and 1.8 mm, respectively. It was determined that the diurnal cycle of PWV about the daily mean value was controlled by evapotranspiration (ET) and the occurrence/timing of deep convection. The PWV in both years reached its hourly maximum later in the afternoon as opposed to at solar noon. This suggested that the surface and atmosphere were well coupled, with ET primarily being controlled by the vapor pressure deficit between the vegetation/surface and atmosphere. The decrease in PWV during the evening and overnight periods of both years was likely the result of deep convection, with or without precipitation, which drew water vapor out of the atmosphere, as well as the nocturnal decline in ET. The results did not change for days on which low-level winds were light (i.e., maximum winds from the surface to 850 hPa were below 20 km h−1), which supports the notion that the diurnal PWV pattern was associated with the daily cycles of local ET and convection/precipitation and was not due to advection. Comparison of AMR PWV with the Canadian GEM model for the growing seasons of 2003 and 2006 indicated that the model error was 3 mm (13%) or more even in the first 12 h, with mean absolute errors ranging from 2 to 3.5 mm and root-mean-square errors from 3 to 4.5 mm over the full 36-h forecast period. It was also found that the 3–9-h forecast period of GEM had better error scores in 2006 than in 2003.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3