Green Roof Mitigation Potential for a Proxy Future Climate Scenario in Chicago, Illinois

Author:

Smith Kathryn R.1,Roebber Paul J.1

Affiliation:

1. Atmospheric Science Group, Department of Mathematical Sciences, University of Wisconsin—Milwaukee, Milwaukee, Wisconsin

Abstract

Abstract The Advanced Research version of the Weather Research and Forecasting Model (ARW) coupled with an urban canopy model is used to investigate the potential of vegetative (green) roof technology to mitigate against ongoing climate warming and continued urban sprawl for a day representing average summer conditions in late-twenty-first-century Chicago, Illinois. Effects related particularly to human health hazards resulting from excessive heat and high pollution concentrations are emphasized. Continued expansion of the urban environment over the next century is shown to lead to an expansion of the warming signal across the metropolitan region. Widespread adoption of vegetative rooftops, through increased albedo and evapotranspiration, reduces temperatures in the urban environment by as much as 3°C, an effect similar to the simpler but less appealing alternative of employing painted or other reflective rooftop structures (e.g., white roofs). A significant limitation to the green roof approach for the case studied is that the increase in moisture resulting from transpiration leads to only marginal cooling when apparent temperatures are considered. An additional complication arises in that the reduced temperatures alter the lake-breeze circulation, potentially reducing circulation of pollutants into the city core, but also reducing natural cooling in the most urbanized areas during the climatologically warmest hours. Future work that evaluates these impacts over a broader range of synoptic settings, documents changes in the planetary boundary layer structure and attendant pollution, and considers the multiple-day dependence of these effects is needed.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference42 articles.

1. Analyzing land use change in urban environments.;Acevedo,1999

2. Temporal march of the Chicago heat island.;Ackerman;J. Climate Appl. Meteor.,1985

3. Meso-Scale Atmospheric Circulations.;Atkinson,1981

4. Urban growth in American cities: Glimpses of U.S. urbanization.;Auch,2004

5. Utilizing the coupled WRF/LSM/urban modeling system with detailed urban classification to simulate the urban heat island phenomena over the greater Houston area.;Chen,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3