Evaluating Detection Skills of Satellite Rainfall Estimates over Desert Locust Recession Regions

Author:

Dinku Tufa1,Ceccato Pietro1,Cressman Keith2,Connor Stephen J.1

Affiliation:

1. International Research Institute for Climate and Society, The Earth Institute at Columbia University, Palisades, New York

2. Desert Locust Information Service, United Nations Food and Agriculture Organization, Rome, Italy

Abstract

Abstract This paper evaluates rainfall detection capabilities of seven satellite rainfall estimates over the desert locust recession regions of the world. The region of interest covers the arid and semiarid region from northwestern Africa to northwestern India. The evaluated satellite rainfall products are the African rainfall climatology (ARC), rainfall estimation algorithm (RFE), Tropical Rainfall Measuring Mission 3B42 and its real-time version (3B42RT), NOAA/Climate Prediction Center morphing technique (CMORPH), and two versions of the Global Satellite Mapping of Precipitation moving vector with Kalman filter (GSMaP-MVK and GSMaP-MVK+). The reference data were obtained from the Desert Locust Information Service of the United Nations Food and Agriculture Organization (FAO). The FAO data are qualitative information collated by desert locust survey teams from different countries during field campaigns. Such data can only be used to assess the rainfall detection capabilities of the satellite products. The validation region is divided into four subregions and validations statistics are computed for each region. The probability of detection varies from 70% for the relatively wet part of the validation region to less than 20% for the driest part. The main weakness of the satellite products is overestimation of rainfall occurrences. The false-alarm ratio was as high as 84% for the driest part and as high as 57% for the wetter region. The satellite products still exhibit positive detection skill for all of the subregions. A comparison of the different products shows that no single product stands out as having the best or the worst overall performance.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3