Identification of Small Ice Cloud Particles Using Passive Radiometric Observations

Author:

Cooper Steven J.1,Garrett Timothy J.1

Affiliation:

1. Department of Atmospheric Science, University of Utah, Salt Lake City, Utah

Abstract

Abstract There is currently significant uncertainty about the extent to which cirrus clouds are composed of “small” ice crystals smaller than about 20-μm effective radius. This is due in part to concerns that in situ measurements from aircraft are plagued by ice particle shattering on instrument inlets, artificially negatively biasing effective radii. Here, space-based measurements are applied to the problem. It is found that a space-based infrared split-window technique is less sensitive but more accurate than a visible-near-infrared technique for confident assessment of whether thin cirrus clouds have small effective radii, independent of a normal range of retrieval assumptions. Because of the sensitivities of the infrared split-window technique, however, this method can only accurately determine the presence of small particles for ice clouds with optical depths between roughly 0.5 and 3.0. Applied to Moderate Resolution Imaging Spectroradiometer (MODIS) data, it is found that a very conservative minimum of 15%–20% of such thin cirrus globally are composed of small ice crystals, but that the actual value could be as high as 40%, and even higher for cold clouds or those in the tropics. Retrievals are found to be in good agreement with airborne probe measurements from the Cirrus Regional Study of Tropical Anvils and Cirrus Layers–Florida-Area Cirrus Experiment (CRYSTAL-FACE) field campaign, implying that, for the cases examined, the impact of inlet shattering on measurements must have been limited.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference42 articles.

1. On the radiative properties of cirrus cloud at solar and thermal wavelengths: A test of model consistency using high-resolution airborne radiance measurements.;Baran;Quart. J. Roy. Meteor. Soc.,2004

2. A scattering phase function for ice cloud: Tests of applicability using aircraft and satellite multi-angle multi-wavelength radiance measurements.;Baran;J. Quant. Spectrosc. Radiat. Transfer,2001

3. The Cloud, Aerosol, and Precipitation Spectrometer (CAPS): A new instrument for cloud investigations.;Baumgardner;Atmos. Res.,2002

4. Radiant 2.0: A user’s guide.;Christi,2003

5. The impact of explicit cloud boundary information on ice cloud microphysical property retrievals from infrared radiances.;Cooper;J. Geophys. Res.,2003

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3