Affiliation:
1. Lawrence Livermore National Laboratory, Livermore, California
Abstract
Abstract
In this paper, wintertime precipitation from a variety of observational datasets, regional climate models (RCMs), and general circulation models (GCMs) is averaged over the state of California and compared. Several averaging methodologies are considered and all are found to give similar values when the model grid spacing is less than 3°. This suggests that California is a reasonable size for regional intercomparisons using modern GCMs. Results show that reanalysis-forced RCMs tend to significantly overpredict California precipitation. This appears to be due mainly to the overprediction of extreme events; RCM precipitation frequency is generally underpredicted. Overprediction is also reflected in wintertime precipitation variability, which tends to be too high for RCMs on both daily and interannual scales. Wintertime precipitation in most (but not all) GCMs is underestimated. This is in contrast to previous studies based on global blended gauge–satellite observations, which are shown here to underestimate precipitation relative to higher-resolution gauge-only datasets. Several GCMs provide reasonable daily precipitation distributions, a trait that does not seem to be tied to model resolution. The GCM daily and interannual variabilities are generally underpredicted.
Publisher
American Meteorological Society
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献