Structure of the Atmospheric Boundary Layer in the Vicinity of a Developing Upslope Flow System: A Numerical Model Study

Author:

Serafin Stefano1,Zardi Dino1

Affiliation:

1. Atmospheric Physics Group, Department of Civil and Environmental Engineering, University of Trento, Trento, Italy

Abstract

Abstract The development of a morning upslope flow is studied by means of idealized numerical simulations. In particular, two cases are examined: a plane slope connecting a lower plain and an elevated plateau and a symmetric mountain in the middle of a uniform plain. The analysis examines various steepness cases and aims at understanding the processes occurring in the area of transition between the upslope flow region and the convective boundary layers (CBLs) growing nearby. A characteristic sequence of events is recognized in the simulations, and their relationship with the along-slope variability of the thermal energy and turbulent kinetic energy budgets is studied. Features occurring after the onset of the upslope wind include a transient depression in the boundary layer depth at the base of the slope and the formation of elevated turbulent layers above the CBL, caused by the divergence of turbulent flow from a thermal plume at the slope top. Numerical evidence agrees well with the results of previous experiments, including both field campaigns and water tank models. It is observed that the occurrence of streamwise inhomogeneities in the upslope flow field favors the occurrence of a multilayered vertical structure of the CBL near heated slopes. Multiple layering appears to be a transient feature, only persisting until sufficient heating causes the merging of the CBL with the overlying elevated turbulent layers. The analysis suggests that the slope steepness is an important factor in determining the speed at which the boundary layer structure near a slope evolves in time: in particular, the development of the wind system appears to occur faster in the vicinity of a steeper slope.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3