Atlantic Tropical Cyclogenetic Processes during SOP-3 NAMMA in the GEOS-5 Global Data Assimilation and Forecast System

Author:

Reale Oreste1,Lau William K.1,Kim Kyu-Myong1,Brin Eugenia1

Affiliation:

1. Laboratory for Atmospheres, NASA Goddard Space Flight Center, Greenbelt, Maryland

Abstract

Abstract This article investigates the role of the Saharan air layer (SAL) in tropical cyclogenetic processes associated with a nondeveloping and a developing African easterly wave observed during the Special Observation Period (SOP-3) phase of the 2006 NASA African Monsoon Multidisciplinary Analyses (NAMMA). The two waves are chosen because they both interact heavily with Saharan air. A global data assimilation and forecast system, the NASA Goddard Earth Observing System, version 5 (GEOS-5), is being run to produce a set of high-quality global analyses, inclusive of all observations used operationally but with additional satellite information. In particular, following previous works by the same authors, the quality-controlled data from the Atmospheric Infrared Sounder (AIRS) used to produce these analyses have a better coverage than the one adopted by operational centers. From these improved analyses, two sets of 31 five-day high-resolution forecasts, at horizontal resolutions of both half and quarter degrees, are produced. Results indicate that very steep moisture gradients are associated with the SAL in forecasts and analyses, even at great distances from their source over the Sahara. In addition, a thermal dipole in the vertical (warm above, cool below) is present in the nondeveloping case. The Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Terra and Aqua satellites shows that aerosol optical thickness, indicative of more dust as opposed to other factors, is higher in the nondeveloping case. Altogether, results suggest that the radiative effect of dust may play some role in producing a thermal structure less favorable to cyclogenesis. Results also indicate that only global horizontal resolutions on the order of 20–30 km can capture the large-scale transport and the fine thermal structure of the SAL, inclusive of the sharp moisture gradients, reproducing the effect of tropical cyclone suppression that has been hypothesized by previous authors from observational and regional modeling perspectives. These effects cannot be fully represented at lower resolutions, therefore global resolution of a quarter of a degree is a minimum critical threshold necessary to investigate Atlantic tropical cyclogenesis from a global modeling perspective.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference25 articles.

1. Tropical Meteorology.;Asnani,2005

2. Hurricane forecasting with the high-resolution NASA finite volume general circulation model.;Atlas;Geophys. Res. Lett.,2005

3. NASA’s modern era retrospective-analysis for research and applications: Integrating earth observations.;Bosilovich,2008

4. NASA’s modern era retrospective-analysis for research and applications.;Bosilovich,2006

5. Tropical cyclone report: Hurricane Helene (AL082006) 12–24 September 2006.;Brown,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3