Wave Reflection and Focusing prior to the Major Stratospheric Warming of September 2002*

Author:

Harnik Nili1,Scott Richard K.2,Perlwitz Judith3

Affiliation:

1. Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York

2. Department of Applied Mathematics, Columbia University, New York, New York

3. NASA Goddard Institute for Space Studies, and Center for Climate Systems Research, Columbia University, New York, New York

Abstract

Abstract Observations of the Southern Hemispheric winter conditions indicate that the major warming of September 2002 resulted from a combination of stationary wave-1 and traveling wave-2 forcing events and suggest that wave and mean-flow anomalies present earlier that winter may have also played a role. Quantities such as the location of the zero wind line, the strength and wave geometry of the vortex, and the horizontal and vertical wave fluxes all differed significantly from climatological values throughout much of the 2002 winter. An analysis of the anomalous features suggests the hypothesis that the persistence of a traveling wave 2 may have increased the likelihood of the combination with stationary wave 1, leading to the observed unprecedented increase in upward Eliassen–Palm flux preceding the warming. The anomalous conditions of the 2002 winter began as early as mid-May of that year and consisted of a large burst of wave flux into the stratosphere and a strong deceleration of the vortex during its early stage of development. The low-latitude easterly anomaly that resulted from this (unprecedented) event appears to have enhanced the poleward focusing of wave activity in the mid- and upper stratosphere during the rest of the winter. The altered wave geometry of the 2002 vortex allowed internal reflection of traveling wave 2, which helps to explain its unusual persistence during the rest of the winter.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3