Regionalization in Fine-Grid GFS MOS 6-h Quantitative Precipitation Forecasts

Author:

Charba Jerome P.1,Samplatsky Frederick G.1

Affiliation:

1. NOAA/National Weather Service, Meteorological Development Laboratory, Silver Spring, Maryland

Abstract

Abstract The recent emergence of the National Digital Forecast Database as the flagship product of the National Weather Service has resulted in an increased demand for forecast guidance products on fine-mesh grids. Unfortunately, fine-grid forecasts with geographically regionalized statistical models are usually plagued by nonmeteorological discontinuities at regional boundaries. This study treats the problem in a regionalized Global Forecast System (GFS)-based model output statistics (MOS) application that produces 6-h probabilistic quantitative precipitation forecasts (PQPFs) on a 4-km grid up to 192 h in advance. The technique involves incorporating areal overlap in the geographical regionalization and weighting multiple PQPFs in region-overlap zones. The degree of overlap ranges from about 20 km along meteorologically significant regional boundaries to about 150 km at quasi-arbitrary boundaries. The forecast-weighting constants for a grid point in an overlap zone vary in direct proportion to the distances to the closest associated regional boundaries. The application of the region-overlap and forecast-weighting techniques resulted in retention of sharp PQPF gradients along meteorologically significant regional boundaries and prevention of artificial discontinuities at quasi-arbitrary boundaries. The eradication of the discontinuities in the forecast patterns was achieved without sacrificing forecast skill. While the regionalization was customized for producing high-spatial-resolution 6-h PQPFs over the contiguous United States with a specialized gridded MOS application, the region-overlap and forecast-weighting techniques may have general applicability. Also, the quality of the 6-h PQPFs was not strongly dependent on customization of the regionalization.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference30 articles.

1. Verification of forecasts expressed in terms of probability.;Brier;Mon. Wea. Rev.,1950

2. Statistical forecasts based on the National Meteorological Center’s numerical weather prediction system.;Carter;Wea. Forecasting,1989

3. Operational system for predicting thunderstorms two to six hours in advance.;Charba,1977

4. Two to six hour severe local storm probabilities: An operational forecasting system.;Charba;Mon. Wea. Rev.,1979

5. Zero-to-six and three-to-nine hour objective forecasts of heavy precipitation amount.;Charba,1987

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3