Affiliation:
1. a Department of Geosciences, Atmospheric Science Group, Texas Tech University, Lubbock, Texas
2. b NOAA/OAR National Severe Storms Laboratory, Norman, Oklahoma
Abstract
Abstract
Lightning is frequently initiated within the convective regions of thunderstorms, and so flash rates tend to follow trends in updraft speed and volume. It has been suggested that lightning production is linked to the turbulent flow generated by updrafts as turbulent eddies organize charged hydrometeors into complex charge structures. These complex charge structures consist of local regions of increased charge magnitudes between which flash-initiating electric fields may be generated. How turbulent kinematics influences lightning production, however, remains unclear. In this study, lightning flashes produced in a multicell and two supercell storms simulated using The Collaborative Model for Multiscale Atmospheric Simulation (COMMAS) were examined to identify the kinematic flow structures within which they occurred. By relating the structures of updrafts to thermals, initiated lightning flashes were expected to be located where the rate of strain and rotational flow are equal, or between updraft and eddy flow features. Results showed that the average lightning flash is initiated in kinematic flow structures dominated by vortical flow patterns, similar to those of thermals, and the structures’ kinematics are characterized by horizontal vorticity and vertical shearing. These kinematic features were common across all cases and demonstrated that where flash-initiating electric fields are generated is along the periphery of updrafts where turbulent eddies are produced. Careful consideration of flow structures near initiated flashes is consistent with those of thermals rising through a storm.
Funder
National Science Foundation
Publisher
American Meteorological Society
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献