Comparison of Lagrangian Superdroplet and Eulerian Double-Moment Spectral Microphysics Schemes in Large-Eddy Simulations of an Isolated Cumulus Congestus Cloud

Author:

Chandrakar Kamal Kant1ORCID,Morrison Hugh1,Grabowski Wojciech W.1,Bryan George H.1

Affiliation:

1. a National Center for Atmospheric Research, Boulder, Colorado

Abstract

Abstract Advanced microphysics schemes (such as Eulerian bin and Lagrangian superdroplet) are becoming standard tools for cloud physics research and parameterization development. This study compares a double-moment bin scheme and a Lagrangian superdroplet scheme via large-eddy simulations of nonprecipitating and precipitating cumulus congestus clouds. Cloud water mixing ratio in the bin simulations is reduced compared to the Lagrangian simulations in the upper part of the cloud, likely from numerical diffusion, which is absent in the Lagrangian approach. Greater diffusion in the bin simulations is compensated by more secondary droplet activation (activation above cloud base), leading to similar or somewhat higher droplet number concentrations and smaller mean droplet radius than the Lagrangian simulations for the nonprecipitating case. The bin scheme also produces a significantly larger standard deviation of droplet radius than the superdroplet method, likely due to diffusion associated with the vertical advection of bin variables. However, the spectral width in the bin simulations is insensitive to the grid spacing between 50 and 100 m, suggesting other mechanisms may be compensating for diffusion as the grid spacing is modified. For the precipitating case, larger spectral width in the bin simulations initiates rain earlier and enhances rain development in a positive feedback loop. However, with time, rain formation in the superdroplet simulations catches up to the bin simulations. Offline calculations using the same drop size distributions in both schemes show that the different numerical methods for treating collision–coalescence also contribute to differences in rain formation. The stochastic collision–coalescence in the superdroplet method introduces more variability in drop growth for a given rain mixing ratio.

Funder

Biological and Environmental Research

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3