Abstract
Abstract
Analyses of simple models of moist tropical motion systems reveal that the column-mean moist static potential vorticity (MSPV) can explain their propagation and growth. The MSPV is akin to the equivalent PV except it uses moist static energy (MSE) instead of the equivalent potential temperature. Examination of an MSPV budget that is scaled for moist off-equatorial synoptic-scale systems reveals that α, the ratio between the vertical gradients of latent and dry static energies, describes the relative contribution of dry and moist advective processes to the evolution of MSPV. Horizontal advection of the moist component of MSPV, a process akin to horizontal MSE advection, governs the evolution of synoptic-scale systems in regions of high humidity. On the other hand, horizontal advection of dry PV predominates in a dry atmosphere. Derivation of a “moist static” wave activity density budget reveals that α also describes the relative importance of moist and dry processes to wave activity amplification and decay. Linear regression analysis of the MSPV budget in eastern Pacific easterly waves shows that the MSPV anomalies originate over the eastern Caribbean and propagate westward due to dry PV advection. They are amplified by the fluxes of the moist component of MSPV over the Caribbean sea and over the eastern Pacific from 105-130°W, underscoring the importance of moist processes in these waves. On the other hand, dry PV convergence amplifies the waves from 90-100°W, likely as a result of the barotropic energy conversions that occur in this region.
Publisher
American Meteorological Society
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献