The Temperature Anomaly Pattern of the Pacific–North American Teleconnection: Growth and Decay

Author:

Clark Joseph P.1,Feldstein Steven B.1

Affiliation:

1. a Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania

Abstract

Abstract Applying composite analysis to ERA-Interim data, the surface air temperature (SAT) anomaly pattern of the Pacific–North American (PNA) teleconnection is shown to include both symmetric and asymmetric SAT anomalies with respect to the PNA phase. The symmetric SAT anomalies, overlying the Russian Far East and western and eastern North America, grow through advection of the climatological temperature by the anomalous meridional wind and vertical mixing. The asymmetric SAT anomalies, overlying Siberia during the positive PNA and the subtropical North Pacific during the negative PNA, grow through vertical mixing only. For all SAT anomalies, vertical mixing relocates the temperature anomalies of the PNA teleconnection pattern from higher in the boundary layer downward to the level of the SAT. Above the level of the SAT, temperature anomaly growth is caused by horizontal temperature advection in all locations except for the subtropical North Pacific, where adiabatic cooling dominates. SAT anomaly decay is caused by longwave radiative heating/cooling, except over Siberia, where SAT anomaly decay is caused by vertical mixing. Additionally, temperature anomaly decay higher in the boundary layer due to nonlocal mixing contributes indirectly to SAT anomaly decay by weakening downgradient diffusion. These results highlight a diverse array of mechanisms by which individual anomalies within the PNA pattern grow and decay. Furthermore, with the exception of Siberia, throughout the growth and decay stages, horizontal temperature advection and/or vertical mixing is nearly balanced by longwave radiative heating/cooling, with the former being slightly stronger during the growth stage and the latter during the decay stage.

Funder

National Science Foundation

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3