Diurnal Cycle and Dipolar Pattern of Precipitation over Borneo during an MJO Event: Lee Convergence and Offshore Propagation

Author:

Zhou Yihao1,Wang Shuguang1,Fang Juan1

Affiliation:

1. a Key Laboratory of Mesoscale Severe Weather, Ministry of Education, School of Atmospheric Sciences, Nanjing University, Nanjing, China

Abstract

Abstract Surface precipitation anomalies over Maritime Continent islands typically lead oceanic precipitation by a week in the form of dipolar pattern before the arrival of Madden–Julian oscillation (MJO) convective phase. The authors study this dipolar pattern over Borneo during the boreal winter MJO event in January–February 2017 using cloud-permitting modeling, observation, and reanalysis datasets. The diurnal cycles of precipitation are analyzed during the local growing and decaying stages of this MJO event. Both the observation and simulation show positive precipitation anomaly over southwestern Borneo and negative anomaly over northeastern Borneo associated with the MJO easterly in the growing stage, whereas the pattern reverses in the decaying stage. Due to relatively high terrain, the low-level flows over Borneo split near the topography on the diurnal time scale. During the late afternoon and night (1700–2000 local solar time), the splitting-flow-induced wake vortices and thermally driven sea breezes tend to converge at the leeside, both contributing to leeward convergence and precipitation, which peaks at midnight. Subsequent offshore propagation during midnight and early morning develops from the leeward inland convection, and propagates northwestwards in the growing stage over west Borneo, and eastward in the decaying stage over east Borneo. Offshore propagation lasts until the next noon when sea breezes and island convection initiate. The timing and location of the offshore propagation suggest that it is not an independent convective mode. Instead, it is tied to the dipolar distribution of island precipitation modulated by the MJO.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3