Northern Hemisphere Winter Blocking: Differing Onset Mechanisms across Regions

Author:

Miller Douglas E.1,Wang Zhuo1

Affiliation:

1. a University of Illinois at Urbana–Champaign, Urbana, Illinois

Abstract

Abstract Atmospheric blocking is a prolific producer of extreme weather with significant socioeconomic impacts. Different physical mechanisms for blocking onset have been proposed and are generally focused on two sectors: the Eurasian and the North Pacific. Here, we objectively separate blocking into four regions and investigate how the blocking onset mechanisms vary from one region to another, focusing on three factors: scale interactions between three frequency bands, Rossby wave breaking (RWB), and diabatic heating. Atlantic blocks are dominated by the low-frequency flow evolution that resembles the negative phase of the North Atlantic Oscillation and are influenced by cyclonic RWB toward the western edge of the anticyclone. Europe blocks are influenced by high-frequency, traveling waves across the Atlantic Ocean and develop rapidly, mainly attributed to strong anticyclonic RWB and interaction between high- and intermediate-frequency flow components. Asian blocks are fixated within a stationary wave train that spans upstream to the western Atlantic Ocean and do not have strong potential vorticity or RWB features. The Pacific blocks are mainly influenced by an intermediate-frequency retrograding wave train, while a low-frequency component resembling the Pacific–North American pattern is evident. The Pacific blocks also contain precursor signals in the stratosphere. Backward trajectory analysis revealed that 35%–45% of parcels initialized within the Atlantic, Europe, and Pacific blocking anticyclones experience heating and ascent, while adiabatic processes dominate Asian blocking. Overall, our analysis demonstrates the importance of decomposing the flow into three frequency bands and illustrates different blocking onset mechanisms over four sectors.

Funder

National Oceanic and Atmospheric Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3