Influences of CAPE on Hail Production in Simulated Supercell Storms

Author:

Abstract

Abstract Lasting updrafts are necessary to produce severe hail; conventional wisdom suggests that extremely large hailstones require updrafts of commensurate strength. Because updraft strength is largely controlled by convective available potential energy (CAPE), one would expect environments with larger CAPE to be conducive to storms producing larger hail. By systematically varying CAPE in a horizontally homogeneous initial environment, we simulate hail production in high-shear, high-instability supercell storms using Cloud Model 1 and a detailed 3D hail growth trajectory model. Our results suggest that CAPE modulates the updraft’s strength, width, and horizontal wind field, as well as the liquid water content along hailstones’ trajectories, all of which have a significant impact on final hail sizes. In particular, hail sizes are maximized for intermediate CAPE values in the range we examined. Results show a non-monotonic relationship between the hailstones’ residence time and CAPE due to changes to the updraft wind field. The ratio of updraft area to southerly wind speed within the updraft serves as a proxy for residence time. Storms in environments with large CAPE may produce smaller hail because the in-updraft horizontal wind speeds become too great, and hailstones are prematurely ejected out of the optimal growth region. Liquid water content (LWC) along favorable hailstone pathways also exhibits peak values for intermediate CAPE values, owing to the horizontal displacement across the midlevel updraft of moist inflow air from differing source levels. In other words, larger CAPE does not equal larger hail, and storm-structural nuances must be examined.

Funder

Division of Atmospheric and Geospace Sciences

IBHS

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference172 articles.

1. Close proximity soundings within supercell environments obtained from the Rapid Update Cycle;Thompson;Wea. Forecasting,2003

2. A radar-based assessment of the detectability of giant hail;Blair;Electron. J. Severe Storms Meteor.,2011

3. The evolution of hail production in simulated supercell storms;Kumjian;J. Atmos. Sci.,2021

4. Spatial and temporal changes of meteorological disasters in China during 1950–2013;Guan;Nat. Hazards,2015

5. The evolution of hail production in simulated supercell storms;Kumjian;J. Atmos. Sci.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3