Representation of Lake–Atmosphere Interactions and Lake-Effect Snowfall in the Laurentian Great Lakes Basin among HighResMIP Global Climate Models

Author:

Notaro Michael1,Jorns Jenna2,Briley Laura2

Affiliation:

1. a Nelson Institute Center for Climatic Research, University of Wisconsin–Madison, Madison, Wisconsin

2. b Great Lakes Integrated Sciences and Assessments, University of Michigan, Ann Arbor, Michigan

Abstract

Abstract Credible modeling, tools, and guidance, regarding the changing Laurentian Great Lakes and the climatic impacts, are needed by local decision-makers to inform their management and planning. The present study addresses this need through a model evaluation study of the representation of lake–atmosphere interactions and resulting lake-effect snowfall in the Great Lakes region. Analysis focuses on an extensive ensemble of 74 historical simulations generated by 23 high-resolution global climate models (GCMs) from the High-Resolution Model Intercomparison Project (HighResMIP). The model assessment addresses the modeling treatment of the Great Lakes, the spatial distribution and seasonality of climatological snowfall, the seasonal cycle of lake-surface temperatures and overlake turbulent fluxes, and the lake-effect ratio between upwind and downwind precipitation. A deeper understanding of model performance and biases is achieved by partitioning results between HighResMIP GCMs that are 1) coupled to 1D lake models versus GCMs that exclude lake models, 2) between prescribed-ocean model configurations versus fully coupled configurations, and 3) between deep Lake Superior versus relatively shallow Lake Erie. While the HighResMIP GCMs represent the Great Lakes by a spectrum of approaches that include land grid cells, ocean grid cells (with lake surface temperature and ice cover boundary conditions provided by the Met Office Hadley Center Sea Ice and Sea Surface Temperature Dataset), and 1D lake models, the current investigation demonstrates that none of these rudimentary approaches adequately represent the complex nature of seasonal lake temperature and ice cover evolution and its impact on lake–atmosphere interactions and lake-effect precipitation in the Great Lakes region. Significance Statement The purpose of this study is to evaluate the capability of high-resolution global climate models to simulate lake–atmosphere interactions and lake-effect snowfall in the Great Lakes region, given the critical influence of the lakes on regional climate and vast societal and environmental impacts of lake-effect snowfall. It is determined that the models inadequately represent lake temperatures and ice cover, often leading to insufficient annual snowfall in the lake-effect zones. More advanced, three-dimensional lake models need to be coupled to climate models to support greater credibility in regional lake and climate simulations and future climate projections.

Funder

Climate Program Office

Earth Sciences Division

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference87 articles.

1. Projected changes in temperature and precipitation over the United States, Central America, and the Caribbean in CMIP6 GCMs;Almazroui, M.,2021

2. Midwest;Angel, J. R.,2018

3. An ice-cover climatology for Lake Erie and Lake Superior for the winter seasons 1897–98 to 1982–83;Assel, R. A.,1990

4. An electronic atlas of Great Lakes ice cover: Winters: 1973–2002;Assel, R. A.,2003

5. Great Lakes ice cover climatology update: Winters 2003, 2004, and 2005;Assel, R. A.,2005

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3