An idealized 1½-layer isentropic model with convection and precipitation for satellite data assimilation research. Part I: model dynamics

Author:

Abstract

Abstract An isentropic 1½-layer model based on modified shallow water equations is presented, including terms mimicking convection and precipitation. This model is an updated version of the isopycnal single-layer modified shallow water model presented in Kent et al. (2017). The clearer link between fluid temperature and model variables together with a double-layer structure make this revised, isentropic model a more suitable tool to achieve our future goal: to conduct idealized experiments for investigating satellite data assimilation. The numerical model implementation is verified against an analytical solution for stationary waves in a rotating fluid, based on Shrira’s methodology for the isopycnal case. Recovery of the equivalent isopycnal model is also verified, both analytically and numerically. With convection and precipitation added, we show how complex model dynamics can be achieved exploiting rotation and relaxation to a meridional jet in a periodic domain. This solution represents a useful reference simulation or “truth” in conducting future (satellite) data-assimilation experiments, with additional atmospheric conditions and data. A formal analytical derivation of the isentropic 1½-layer model from an isentropic 2-layer model without convection and precipitation is shown in a companion paper (Part II).

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3